

Subject Sharing

SCIENCE DEPARTMENT

We nurture students to become **Reflective Thinkers** and **Caring Citizens** who **Lead to Serve** the Nation and the World.

Upper Secondary Sciences

Subjects	Offered to students taking subjects at G3 level only	Offered to students taking a combination of subjects at G3 & G2 Level	Offered to students taking a combination of subjects at G2 & G1 Level
G3, 6091 Physics	\checkmark		
G3, 6092 Chemistry	\checkmark		
G3, 6093 Biology	\checkmark		
G3, 5086 SCI(P/C)			
G3, 5088 SCI(C/B)			
G2, 5015 SCI(P/C)			
G2, 5017 SCI(C/B)			\checkmark
G1, 5148 Science			

*minimum class size of 10 students

Pure Sciences vs. Combined Sciences

- Scope of Learning
- **Depth** of Learning
- Assessment format
- Assessment demand

Scope of Learning

Sections	Topics		
Sections	0-Level [G3]	O-Level (Science) [G3]	N-Level (Science) [G2]
Measurements	1. Physical Quantities, Units and Measurements	1. Physical Quantities, Units and Measurements	1. Physical Quantities, Units and Measurements
	2. Kinematics	2. Kinematics	2. Kinematics
		3. Force and Pressure	3. Force and Pressure
Neutonia Machaela	3. Dynamics	4. Dynamics	4. Dynamics
Newtonian Mechanics	4. Turning Effects of Forces	5. Turning Effects of Forces	
	5. Pressure		
	6. Energy	6. Energy	5. Energy
	7. Kinetic Particle Model of Matter	7. Kinetic Particle Model of Matter	6. Kinetic Particle Model of Matter
Thermal Physics	8. Thermal Processes	8. Thermal Processes	7. Thermal Processes
	9. Thermal Properties of Matter		
	10. General Wave Properties	9. General Wave Properties	8. General Wave Properties
Waves	11. Electromagnetic Spectrum	10. Electromagnetic Spectrum	9. Electromagnetic Spectrum
	12. Light	11. Light	
	13. Static Electricity		
	14. Current of Electricity		
		12. Electric Charge and Current of Electricity	10. Electric Charge and Current of Electricity
	15. D.C Circuits	13. D.C Circuits	11. D.C Circuits
Electricity and Magnetism	16. Practical Electricity	14. Practical Electricity	12. Practical Electricity
	17. Magnetism		
	18. Electromagnetism		
		15. Magnetism and Electromagnetism	
	19. Electromagnetic Induction		
Radioactivity	20. Radioactivity	16. Radioactivity	13. Radioactivity

Scope of Learning

Sections	O-Chemistry [G3]	O-Sci (Chemistry) [G3]	N-Sci (Chemistry) [G2]
	1. Experimental Chemistry	1. Experimental Chemistry	1. Experimental Chemistry
Matter – Structures and Properties	2. The Particulate Nature of Matter	2. The Particulate Nature of Matter	2. The Particulate Nature of Matter
	3. Chemical Bonding and Structure	3. Chemical Bonding and Structure	3. Chemical Bonding and Structure
	4. Chemical Calculations	4. Chemical Calculations	4. Chemical Calculations
	5. Acid-Base Chemistry	5. Acid-Base Chemistry	5. Acid-Base Chemistry
	6. Qualitative Analysis	6. Qualitative Analysis	6. Qualitative Analysis
Chemical Reactions	7. Redox Chemistry	7. Redox Chemistry	-
	8. Patterns in the Periodic Table	8. Patterns in the Periodic Table	7. Patterns in the Periodic Table
	9. Chemical Energetics	9. Chemical Energetics	-
	10. Rate of Reactions	10. Rate of Reactions	-
Chemistry in a Sustainable World	11. Organic Chemistry	11. Organic Chemistry	8. Organic Chemistry
Chemistry in a Sustainable World	12. Maintaining Air Quality	12. Maintaining Air Quality	9. Maintaining Air Quality

Castions	Topics			
Sections	O-Level [G3]	O-Level (Science)[G3]	N-Level (Science)[G2]	
	1. Cell Structure and Organisation	1. Cell Structure and Organisation	1. Cell Structure and Organisation	
Cells and the Chemistry of Life	2. Movement of Substances	2. Movement of Substances	2. Movement of Substances	
	3. Biological Molecules	3. Biological Molecules	3. Biological Molecules	
	4. Nutrition in Humans	4. Nutrition in Humans	4. Nutrition in Humans	
	5. Transport in Humans	5. Transport in Humans	5. Transport in Humans	
The Human Body –	6. Respiration in Humans	6. Respiration in Humans	6. Respiration in Humans	
Maintaining Life	7. Excretion in Humans			
	 Homeostasis, Co-ordination and Response in Humans 			
	9. Infectious Diseases in Humans	7. Infectious Diseases in Humans	7. Infectious Diseases in Humans	
Living Together –	10. Nutrition and Transport in Flowering Plants	 Nutrition and Transport in Flowering Plants 	 Nutrition and Transport in Flowering Plants 	
Plants, Animals and Ecosystems*	11. Organisms and their Environment	 Organisms and their Environment 		
	12. Molecular Genetics	10. Molecular Genetics		
Continuity of Life	13. Reproduction	11. Reproduction in Humans		
	14. Inheritance	12. Inheritance		

Depth of Learning

Physics .



ENERGY

- Energy stores and transfers
- Work, Power and efficiency (Efficiency for O-Phy only)
- Energy resources (For O-Phy only)

	2023 O-Level Physics G3	2023 O-Level Science (Physics) G3	2023 N-Level Science (Physics) G2
e.g. kin nuclear transfer (i) Meci (ii) Elec (ii) By f (iv) By f	n understanding that there are energy stores, etic, potential (gravitational, chemical, elastic), and internal, and that energy can be rred from one store to another: hanically (by a force acting over a distance), trically (by an electric current), heating (due to a temperature difference), propagation of waves (both electromagnetic echanical)	 (a) show an understanding that there are energy stores, e.g. kinetic, potential (gravitational, chemical, elastic), nuclear and internal, and that energy can be transferred from one store to another: (i) Mechanically (by a force acting over a distance), (ii) Electrically (by an electric current), (iii) By heating (due to a temperature difference), (iv) By propagation of waves (both electromagnetic and mechanical) 	 (a) show an understanding that there are energy stores, e.g. kinetic, potential (gravitational, chemical, elastic), nuclear and internal, and that energy can be transferred from one store to another: (i) Mechanically (by a force acting over a distance), (ii) Electrically (by an electric current), (iii) By heating (due to a temperature difference), (iv) By propagation of waves (both electromagnetic and mechanical)
= ½ mv Earth's solve re	nd apply the relationships for kinetic energy (<i>E</i> _k ²) and gravitational potential energy near the surface (<i>E</i> _p = <i>mgh</i>) to new situations or to elated problems	 (b) recall and apply the relationships for kinetic energy (E_k = ½ mv²) and gravitational potential energy near the Earth's surface (E_p = mgh) to new situations or to solve related problems 	(b) recall and apply the relationships for kinetic energy (E _k = ½ mv ²) and gravitational potential energy near the Earth's surface (E _p = mgh) to new situations or to solve related problems
apply th	he principle of the conservation of energy and he principle to new situations or to solve problems	(c) state the principle of the conservation of energy and apply the principle to new situations or to solve related problems	(c) state the principle of the conservation of energy and apply the principle to new situations or to solve related problems
distance	nd apply the relationship work done = force × e moved in the direction of the force to new ons or to solve related problems	(d) recall and apply the relationship work done = force × distance moved in the direction of the force to new situations or to solve related problems	(d) recall and apply the relationship work done = force × distance moved in the direction of the force to new situations or to solve related problems
transfel related	nd apply the relationship <i>power</i> = energy r / time taken to new situations or to solve problems	(e) recall and apply the relationship power = energy transfer / time taken to new situations or to solve related problems	(e) recall and apply the relationship power = energy transfer / time taken to new situations or to solve related problems
	te the efficiency of an <mark>energy transfer</mark> using the a <i>efficiency = useful energy output / total</i> input		
such as energy hydrop generat	the use of non-renewable energy resources fossil fuel and nuclear fuel, and renewable resources such as biofuel, wind, tides, ower, geothermal reservoirs and solar to te electricity in terms of efficiency of energy r, cost, reliability and their environmental		

Depth of Learning

TOPIC 2. THE PARTICULATE NATURE OF MATTER

- Kinetic Particle Theory
- Atomic Structure

2023 O-Level Chemistry G3	2023 O-Level Science (Chemistry)	2023 N-Level Science (Chemistry)
2.1(a) describe the solid, liquid and	2.1(a) describe the solid, liquid and	2.1(a) describe the solid, liquid and
gaseous states of matter and explain	gaseous states of matter and explain	gaseous states of matter and explain
their interconversion in terms of the	their interconversion in terms of the	their interconversion in terms of the
kinetic particle theory and of the energy	kinetic particle theory and of the energy	kinetic particle theory and of the energy
changes involved	changes involved	changes involved
2.1(b) describe and explain evidence for	-	-
the movement of particles in liquids		
and gases (treatment of Brownian		
motion is not required)		
2.1(c) explain everyday effects of	-	
diffusion in terms of particles, e.g. the		
spread of perfumes and cooking		
aromas; tea and coffee grains in water		
2.1(d) state qualitatively the effect of	-	-
molecular mass on the rate of diffusion		
and explain the dependence of rate of		
diffusion on temperature		
2.2(a) state the relative charges and	2.2(a) state the relative charges and	2.2(a) state the relative charges and
approximate relative masses of a	approximate relative masses of a	approximate relative masses of a
proton, a neutron and an electron	proton, a neutron and an electron	proton, a neutron and an electron
2.2(b) describe, with the aid of	2.2(b) describe, with the aid of	2.2(b) describe, with the aid of
diagrams, the structure of an atom as	diagrams, the structure of an atom as	diagrams, the structure of an atom as
consisting of protons and neutrons	consisting of protons and neutrons	consisting of protons and neutrons
(nucleons) in the nucleus and electrons	(nucleons) in the nucleus and electrons	(nucleons) in the nucleus and electrons
arranged in shells (energy levels)	arranged in shells (energy levels)	arranged in shells (energy levels)
(knowledge of s, p, d and f classification	(knowledge of s, p, d and f classification	(knowledge of s, p, d and f classification
is not required; a copy of the Periodic	is not required; a copy of the Periodic	is not required; a copy of the Periodic
Table will be available in Papers 1 and	Table will be available in the	Table will be available in the
2)	examination)	examination)

Depth of Learning

MOVEMENT OF SUBSTANCES

- Diffusion
- Osmosis
- Active Transport (O-Level Biology only)

2023 O-Level Biology[G3]	2023 O-Level Science (Biology)[G3]	2023 N-Level Science (Biology)[G2]
 (a) define <i>diffusion</i> and describe its role in	 (a) define <i>diffusion</i> and describe its role in	 (a) define <i>diffusion</i> and describe its role in
nutrient uptake and gaseous exchange	nutrient uptake and gaseous exchange	nutrient uptake and gaseous exchange
in plants and humans	in plants and humans	in plants and humans
(b) define osmosis, investigate and	(b) define osmosis, investigate and	(b) define osmosis, investigate and
describe the effects of osmosis on plant	describe the effects of osmosis on plant	describe the effects of osmosis on plant
and animal tissues	and animal tissues	and animal tissues
(c) define active transport and discuss its importance as an energy-consuming process by which substances are transported against a concentration gradient, as in ion uptake by root hairs and uptake of glucose by cells in the villi		

Pure Sciences

Paper	Type of Paper	Duration	Marks	Weighting
1	Multiple Choice	1 h	40	30%
2	Structured and Free Response	1 h 45 min	80	50%
3	Practical	1 h 50 min	40	20%

Combined Sciences

Paper	Type of Paper	Duration	Marks	Weighting
1	Multiple Choice	1 h	40	20.0%
2	Structured and Free Response (Physics)	1 h 15 min	65	32.5%
3	Structured and Free Response (Chemistry)	1 h 15 min	<mark>65</mark>	32.5%
4	Structured and Free Response (Biology)	1 h 15 min	65	32.5%
5	Practical Test	1 h 30 min	30	15.0%

Assessment **demand**

5086/5088 Science(Chemistry)

11 One of the isotopes of bromine has the symbol shown.

⁷⁹35**Br**

Table 11.1

(a) (i) Complete Table 11.1 to show the relative mass and relative charge of the particles found in this isotope.

particle	relative mass	relative charge
electron		
proton		1+
neutron	1	

[2]

[3]

(ii) Determine the number of each of these particles found in one atom of this isotope.

electrons

neutrons

(iii) An atom of another isotope of bromine has twice the number of nucleons as one atom of $^{40}_{20}$ Ca.

Deduce the number of neutrons present in an atom of this isotope of bromine.

Home of Thoughtful Leaders

Serve with Honour, Lead with Humility

6092 Chemistry

A2 Some elements have many isotopes.

Table 2.1 shows information about three isotopes of element X.

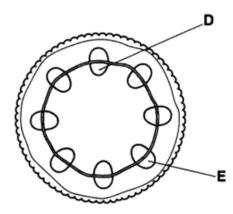
	6	element X		
isotope	1	2	3	
number of protons	16	16	16	
number of neutrons	13	14	15	
number of electrons	16	16	16	
number of electrons in outer shell	6	6	6	

Table 2.1

(a) Use data from the table to show that 1, 2, and 3 are isotopes of the same element.

(b) Explain how the data suggests that the three isotopes have the same chemical reactions.

6093 Biology



(c) Special cells in the rubber tree, called lactifers, produce latex. Latex is a liquid containing several substances, including proteins and sugars. Latex can be moved both up and down inside the main stem (trunk) of the tree.

State the name of the tissue that is involved in this transport.

5088 Science (Biology)

6 Fig. 6.1 is a section of a dicotyledonous stem.

(a) Name tissues D and E and describe their functions.

Subject Sharing

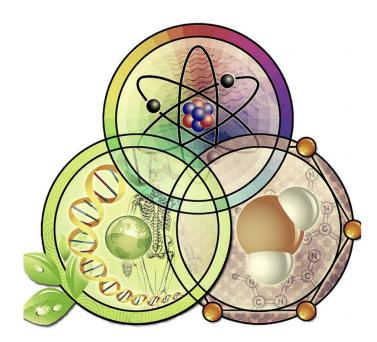
SCIENCE DEPARTMENT

We nurture students to become **Reflective Thinkers** and **Caring Citizens** who **Lead to Serve** the Nation and the World.

Upper Secondary Sciences

Subjects	Offered to students taking subjects at G3 level only	Offered to students taking a combination of subjects at G3 & G2 Level	Offered to students taking a combination of subjects at G2 & G1 Level
G3, 6091 Physics	\checkmark		
G3, 6092 Chemistry	\checkmark		
G3, 6093 Biology	\checkmark		
G3, 5086 SCI(P/C)			
G3, 5088 SCI(C/B)			
G2, 5015 SCI(P/C)			
G2, 5017 SCI(C/B)			\checkmark
G1, 5148 Science			

*minimum class size of 10 students


Pure Sciences vs. Combined Sciences

- Scope of Learning
- **Depth** of Learning
- Assessment format
- Assessment demand

Consideration factors

PERSONAL Interest

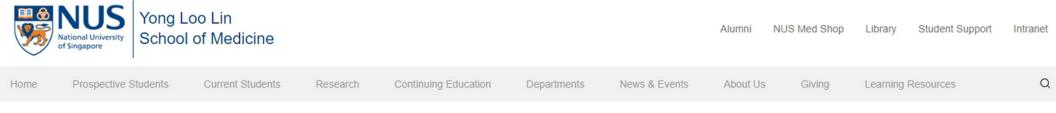
Consideration factors

YOUR Future Aspiration

Science course @ JC						
H2 Science	H2 Science	H2 Science	H1/H2 Arts			
 Mathematics (O-Level Additional Math) Chemistry (O-Level Chemistry) Biology or Physics or Computing 			 Art Economics Literature in English Geography History Music 			

Arts course @ JC						
H2 Arts	H2 Arts	H2 Arts	H1/H2 Science			
 Economics (any one) Art or Literature in English or Geography or History or Music (any one) Art or Literature in English or Geography or History or Music 			 Biology Chemistry Physics Combined Science Mathematics Computing 			
Home	of Thoughtful Leaders					

Word of Advice



• JC entry requirement: L1 R5 (one Humanities + two Math/Science + Best 2)

• Poly entry requirement: L1 R2 B2

2 Language	2 Arts	1/2 Math	2 Science (JC) 1 Science (Poly)
 English Mother Tongue 	 1. Pure Humanities Geography History Literature Higher Art 2. Elective Humanities SS + Geo SS + Hist SS + Lit in EL 	 Elementary Mathematics Additional Mathematics 	 Chemistry Biology OR Chemistry Physics OR Chemistry Sci (Phy, Chem) Sci (Chem, Bio)

NUS Medicine Pre-requisites Programme Information Programme Details Bachelor of Medicine and Bachelor of Surgery (MBBS) ... Curriculum Overview Please refer below for the pre-requisites for the different pre-university qualifications. Curriculum: Phases For further enquiries regarding your qualification's pre-requisites, please contact the NUS Office of Admissions here → Curriculum: Electives NUS Common Curriculum for Healthcare Professionals Education NUS Medicine Pathway Programmes SINGAPORE-CAMBRIDGE GCE 'A' LEVEL CERTIFICATE **Tuition Fees & Financial Aid** A good H2 pass in Chemistry and H2 pass in either Biology or Physics. Of the best six subjects (i.e. 4 content-based subjects, H1 GP and H1 PW), used in the computation of the University Admission Score, at least one content subject to be from a contrasting discipline. Student Life The 4 content-based subjects can be of the following combinations: Office for Students 4 H2 content-based subjects OR 3 H2 and 1 H1 content-based subjects Supplementary qualification is not required (eg. BMAT/UCAT). Application View Full Requirements → **NUS Medicine Pre-requisites**

SINGAPORE-CAMBRIDGE GCE 'A' LEVEL CERTIFICATE

A good H2 pass in Chemistry and H2 pass in either Biology or Physics.

Of the best six subjects (i.e. 4 content-based subjects, H1 GP and H1 PW), used in the computation of the University Admission Score, at least one content subject to be from a contrasting discipline.

The 4 content-based subjects can be of the following combinations:

- 4 H2 content-based subjects OR
- 3 H2 and 1 H1 content-based subjects

Supplementary qualification is not required (eg. BMAT/UCAT).

View Full Requirements →

Holistic Education

2 Language	2 Arts	1/2 Math	2 Science (JC) 1 Science (Poly)
 English Mother Tongue 	 1. Pure Humanities Geography History Literature Higher Art 2. Elective Humanities SS + Geo SS + Hist SS + Lit in EL 	 Elementary Mathematics Additional Mathematics 	 Chemistry Biology OR Chemistry Physics OR Chemistry Sci (Phy, Chem) Sci (Chem, Bio)

- CCA (Social and Leadership development)
- Student Initiated Learning (SIL) Explore new interest, Engage in new experiences
- **O** Deepening Learning through participation in seminars, talks, competitions

Word of Advice

for Learning of Science at Upper Secondary

- 2-year course
- New topics, new connections, new depth
- Your ability to connect concepts and apply concepts in new situations will be challenged, not just memory work!
- Seek to understand first, not memorise
- The accurate use of scientific terms is important! these must memorise.
- Consistency is key!
- Always clarify, Take notes & Organise work